5,6-Dihydro-1,3-dimethyl-5,6-bis-[1', 3^{\prime}-dimethyl-2', $\mathbf{4}^{\prime}, 6^{\prime}$-trioxopyrimid $\left.\left(5^{\prime}, 5^{\prime}\right) y l\right]$ furo $[2,3-d]$ uracil

By Mitch Poling and Dick van der Helm*
Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73069, U.S.A.

(Received 23 April 1976; accepted 19 May 1976)

Abstract

C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{9}\), m.p. $370-373^{\circ}$ dec., orthorhombic, space group Pbca, $a=13.236$ (1), $b=15.931$ (1), $c=19 \cdot 584$ (2) $\AA, \quad Z=8, \quad M=462 \cdot 37, \quad D_{x}=1 \cdot 487$, $D_{m}=1.492 \mathrm{~g} \mathrm{~cm}^{-3}$. The title compound is a trimeric form of 1,3 -dimethylbarbituric acid with two spiro linkages and a central dihydrofuran ring. The bond between the two quaternary carbons $\mathrm{C}(12)-\mathrm{C}(22)$ is 1.612 A.

Introduction. The title compound represents a novel trimeric structure synthesized from 1,3-dimethylbarbituric acid by electrochemical oxidation. A preliminary report of this structure has been published (Kato, Poling, van der Helm \& Dryhurst, 1974).

[^0]Table 1. Positional parameters for C, O, and N atoms Calculated standard deviations are given in parentheses.

	x	y	z
C(11)	687 (1)	5856 (1)	2068 (1)
C(12)	672 (1)	4956 (1)	2353 (1)
C(13)	-78 (1)	4840 (1)	2933 (1)
C(14)	6 (2)	6352 (1)	3155 (1)
C(15)	599 (2)	7359 (1)	2311 (1)
C(16)	-867 (2)	5431 (1)	3952 (1)
O(11)	937 (1)	5999 (1)	1490 (1)
$\mathrm{O}(12)$	-436 (1)	4162 (1)	3065 (1)
$\mathrm{O}(13)$	-165 (2)	6929 (1)	3534 (1)
$\mathrm{N}(11)$	451 (1)	6481 (1)	2525 (1)
$\mathrm{N}(12)$	-254 (1)	5537 (1)	3332 (1)
$\mathrm{C}(21)$	2406 (1)	5447 (1)	2834 (1)
C (22)	1794 (1)	4695 (1)	2593 (1)
C(23)	1740 (1)	4006 (1)	3135 (1)
C(24)	1870 (1)	5101 (1)	4000 (1)
C(25)	2686 (2)	6445 (1)	3757 (1)
C(26)	1314 (2)	3687 (1)	4314 (1)
$\mathrm{O}(21)$	2910 (1)	5863 (1)	2452 (1)
O(22)	1750 (1)	3274 (1)	2983 (1)
$\mathrm{O}(23)$	1785 (1)	5310 (1)	4586 (1)
$\mathrm{N}(21)$	2249 (1)	5652 (1)	3508 (1)
N(22)	1615 (1)	4298 (1)	3789 (1)
C(31)	1492 (1)	4065 (1)	1604 (1)
C(32)	572 (1)	4338 (1)	1777 (1)
C(33)	-270 (1)	4181 (1)	1345 (1)
C(34)	914 (1)	3361 (1)	622 (1)
C(35)	2708 (2)	3229 (1)	929 (1)
C(36)	-850 (2)	3463 (2)	300 (1)
O(31)	2259 (1)	4337 (1)	2004 (1)
$\mathrm{O}(32)$	-1130 (1)	4441 (1)	1432 (1)
O(33)	1071 (1)	2916 (1)	132 (1)
N(31)	1701 (1)	3577 (1)	1063 (1)
N(32)	-25 (1)	3689 (1)	771 (1)

The compound was recrystallized from methanol. An orthorhombic crystal, $0.125 \times 0.291 \times 0.581 \mathrm{~mm}$, was used for data collection and unit-cell determination. The unit-cell dimensions were determined at $27^{\circ} \mathrm{C}$ from the $+2 \theta$ and -2θ values of 14 reflections distributed through all octants of reciprocal space, with $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1 \cdot 54051 \AA)$. The data showed systematic absences: $0 k l, k=2 n+1 ; h 0 l, l=2 n+1$; $h k 0, h=2 n+1 ; h 00, h=2 n+1 ; 0 k 0, k=2 n+1 ; 00 l$, $l=2 n+1$ which uniquely determine space group Pbca. The intensities of 3705 reflections [3285 reflections had $I>2 \sigma(I)]$ with $2 \theta<135^{\circ}$ were measured with Nifiltered $\mathrm{Cu} K \bar{\alpha}$ radiation $(\lambda=1 \cdot 5418 \AA$) and $\theta-2 \theta$ scans on a Nonius CAD-4 automatic diffractometer. Lorentz and polarization corrections were applied; no absorption corrections were made. The crystal structure was determined by direct methods with the MULTAN (Germain, Main \& Woolfson, 1971) program. The structure was refined by block-diagonal least-squares techniques (Ahmed, 1966) with anisotropic temperature factors for the non-H atoms and isotropic temperature factors for the H atoms. The refinement was terminated when all shifts for the non- H atoms were less than $0 \cdot 7$ of the corresponding estimated standard deviation. Scattering factors for C, O, and N were taken from International Tables for X-ray Crystallography (1962) and those for H from Stewart, Davidson \& Simpson (1965). R for all data (3705) based on the final parameters (Table 1) $\left(R=\Sigma| | k F_{o}\left|-\left|F_{c}\right| / / \Sigma\right| k F_{o} \mid\right)$ was $0.043 . \dagger$ The weights of F in the least-squares calculation were calculated from $\sigma(I)$ determined from counting statistics (van der Helm, Ealick \& Burks, 1975).

Discussion. An ORTEP drawing (Johnson, 1965) of a single molecule with thermal ellipsoids is given in Fig. 1, bond lengths in Fig. 2, and bond angles in Fig. 3. The range of $\mathrm{C}-\mathrm{H}$ bonds is 0.83 to $1.07 \AA$ with an average value of $0.96 \AA$. Apparently it is energetically unfavorable in the electrochemical oxidation to form a cyclopropane ring with $\mathrm{C}(12), \mathrm{C}(22)$ and $\mathrm{C}(32)$, but instead a central dihydrofuran ring is formed with $\mathrm{C}(12), \mathrm{C}(22)$

[^1]

Fig. 1. Stereo view of a single molecule (Johnson, 1965).

Fig. 2. Bond distances and numbering scheme.

Fig. 3. Bond angles.

Fig. 4. Ring conformations and least-squares planes. The equations of the least-squares planes are: (A) $11.593 x-0 \cdot 655 y+9.415 z$ $=2 \cdot 484 ;(B) 12 \cdot 394 x-5 \cdot 340 y+2 \cdot 029 z=0 \cdot 484 ;(C) 2 \cdot 511 x+13 \cdot 141 y-10 \cdot 429 z=4 \cdot 019 ;(D) 2 \cdot 647 x+13 \cdot 043 y-10 \cdot 541 z=4 \cdot 023$. Vertical scale in \AA.
and three atoms of the third barbiturate molecule. The bond distance between the C atoms of the two spirolinked barbiturate molecules [$\mathrm{C}(12)-\mathrm{C}(22)$] is quite long, $1.612 \AA$. The Newman projection in Fig. 2 shows the half-eclipsed configuration of the substituents on these quaternary atoms. Similarly long bonds have been previously observed involving adjacent quaternary C atoms with partially eclipsed substituents (McCandlish, 1974; Birnbaum, 1972).

Distances of the atoms in the five- and six-membered rings from least-squares planes passing through the ring atoms are given in Fig. 4. The five-membered ring is in an envelope conformation. The barbiturate ring C is almost planar. The small puckering observed is the asymmetric one of two common types of nonplanarity found in barbiturate crystals (Craven, Cusatis, Gartland \& Vizzini, 1973). Rings A and B show much larger deviations from planarity; they assume a half-chair conformation. Rings A and B approximately face each other; the angle between the normals to their leastsquares planes is 27.9°. They are approximately at right angles to ring C, with $82 \cdot 9^{\circ}$ for $A-C$ and $81 \cdot 9^{\circ}$ for $B-C$ (angles between normals to the least-squares planes).

The molecules are closely packed in the crystal structure, which is indicated by the fact that there are six intermolecular distances from $2 \cdot 89$ to $3 \cdot 00 \AA$. The contacts (2) are between N and O atoms, an O atom and the C atom of a methyl group (1), and an O atom of a carbonyl group (3). The latter three distances are $2.986,2.971$ and $2.897 \AA$. Only the shortest one, $\mathrm{C}(21) \cdots \mathrm{O}(32)\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$, seems to be an example of a close $\mathrm{O} \cdots \mathrm{C}=\mathrm{O}$ contact in which the C atom is
displaced out of the plane of the carbonyl group towards the nearby O atom (Bürgi, Dunitz \& Shefter, 1974). The displacement for $C(21)$ is $0.031 \AA$, while the $\mathrm{O} \cdots \mathrm{C}=\mathrm{O}$ angle is $102 \cdot 6^{\circ}$. The displacements of the C atoms involving the two longer distances are only $0.006 \AA$ and are not significant.

We thank the University of Oklahoma for providing computer time. Part of this research was supported by grant GM-21822 from the National Institutes of Health.

References

Ahmed, F. R. (1966). SFLS program. NRC-10. National Research Council, Ottawa.
Birnbaum, G. I. (1972). Acta Cryst. B28, 1248-1254.
Bürgi, H. B., Dunitz, J. D. \& Shefter, E. (1974). Acta Cryst. B30, 1517-1527.
Craven, b. M., Cusatis, C., Gartland, G. L. \& Vizzini, E. A. (1973). J. Mol. Struct. 16, 331-342.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Kato, S., Poling, M., van der Helm, D. \& Dryhurst, G. (1974). J. Amer. Chem. Soc. 96, 5255-5257.

McCandlish, L. (1974). Ph.D. Thesis, Univ. of Washington, Seattle, Washington, U.S.A.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Van der Helm, D., Ealick, S. E. \& Burks, J. E. (1975). Acta Cryst. B31, 1013-1018.

[^0]: * Supported, in part, by N.I.H. Development Award GM42572.

[^1]: \dagger A list of structure factors, the coordinates for the H atoms and the thermal parameters for all the atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31939 (16 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

